
Answering Count Questions with Structured Answers from Text
Shrestha Ghosha,b,∗, Simon Razniewskia and Gerhard Weikuma

aMax Planck Institute for Informatics, Saarland Informatics Campus, Saarbruecken, 66125, Germany
bSaarland University, Saarland Informatics Campus, Saarbruecken, 66125, Germany

A R T I C L E I N F O
Keywords:
Question Answering
Count Queries
Explainable AI

A B S T R A C T
In this work we address the challenging case of answering count queries in web search, such as
number of songs by John Lennon. Prior methods merely answer these with a single, and sometimes
puzzling number or return a ranked list of text snippets with different numbers. This paper proposes a
methodology for answering count queries with inference, contextualization and explanatory evidence.
Unlike previous systems, our method infers final answers from multiple observations, supports
semantic qualifiers for the counts, and provides evidence by enumerating representative instances.
Experiments with a wide variety of queries, including existing benchmark show the benefits of
our method, and the influence of specific parameter settings. Our code, data and an interactive
system demonstration are publicly available at https://github.com/ghoshs/CoQEx and https:
//nlcounqer.mpi-inf.mpg.de/.

1. Introduction

Motivation and Problem. Question answering (QA) and
web search with telegraphic queries have been greatly ad-
vanced over the last decade (Balog, 2018; Diefenbach et al.,
2018; Huang et al., 2020; Usbeck et al., 2019). Nevertheless,
queries that can have multiple correct answers due to vari-
ance in semantic qualifiers (top 10 albums, singles albums,
remastered albums) and alternative representations through
instances remain underexplored and pose open challenges.
This paper addresses the class of count queries, to return the
number of instances that have a certain property. Examples
are:

• How many songs did John Lennon write for the Beatles?

• How many languages are spoken in Indonesia?

• How many unicorn companies are there?

Count queries are frequent in search engine logs as well
as QA benchmarks (Rajpurkar et al., 2016; Kwiatkowski
et al., 2019; Dubey et al., 2019; Voorhees, 2001). If the
required data is in a structured knowledge base (KB) such
as Wikidata (Vrandečić and Krötzsch, 2014), then answer-
ing is relatively straightforward. However, KBs are limited
not only by their sparsity, but also by the lack of direct
links between instances and explicit counts when both are
present (Ghosh et al., 2020). Besides, evaluating the addi-
tional condition for the Beatles (i.e., a subset of his songs)
is beyond their scope. In Figure 1, 160 is the output to
a SPARQL query which counts the number of songs by
Lennon performed by The Beatles1. The query translation,
here performed by an expert user, is a challenge in itself and
is beyond the scope of this work. Nevertheless, for a user

∗Corresponding author
ghoshs@mpi-inf.mpg.de (S. Ghosh); srazniew@mpi-inf.mpg.de (S.

Razniewski); weikum@mpi-inf.mpg.de (G. Weikum)
ORCID(s):

1https://w.wiki/4XVq: last queried on June 2022.

who is unaware of the composer duo Lennon-McCartney,
would hardly doubt the output of 160 songs to the SPARQL
query, which contains songs jointly written by Lennon with
his co-band member.

Search engines are the commercial state-of-the-art that
are exposed to real-life user queries. They handle popular
cases reasonably well, but also fail on semantically refined
requests (e.g., for the Beatles), merely returning either a
number without explanatory evidence or multiple candidate
answers with high variance (Figure 1). We also see incorrect
spans being highlighted 22 songs in the second snippet,
which is actually a count of songs written by George Har-
rison.

Answering count queries from web contents thus poses
several challenges:

1. Aggregation and inference: Returning just a single
number from the highest-ranked page can easily go
wrong. Instead, joint inference over a set of candi-
dates, with an awareness of the distribution and other
signals, is necessary for a high-confidence answer.

2. Contextualization: Counts in texts often come with
contexts on the relevant instance set. For example,
John Lennon co-wrote about 180 songs for the Bea-
tles, 150 as a solo artist, etc. For correct answers it
is crucial to capture context from the underlying web
pages and properly evaluate these kinds of semantic
qualifiers.

3. Explanatory Evidence: A numeric answer alone, such
as 180 for the Beatles songs by Lennon, is often
unsatisfactory. The user may even perceive this as
non-credible, and think that it is too high as they
may have only popular songs in mind. It is, therefore,
crucial to provide users with explanatory evidence.

Contribution. This paper presents CoQEx, Count Question
answering with Explanatory evidence, which answers count

Ghosh et al.: Preprint submitted to Elsevier Page 1 of 18

https://github.com/ghoshs/CoQEx
https://nlcounqer.mpi-inf.mpg.de/
https://nlcounqer.mpi-inf.mpg.de/
https://w.wiki/4XVq

Answering Count Questions with Structured Answers from Text

Relevant text segments

SOTA: KB-QA

SPARQL output: 160

Verbalized output: John Lennon composed 160 songs

for the Beatles.

SOTA: Open-domain QA

Direct answer: Span prediction from a featured snippet

(snippet with high relevance and confident span prediction)

Ranked text segments: Ranked list of text segments with

highlighted spans in each.

Answer Inference 73 Representative Context 73 songs

Synonyms 61 Beatles tracks, 70 songs, 84 songs

Subgroups 23 vocals, top 10 songs

Incomparables 150 solo songs, 180 jointly credited, 200 songs

Instances Hey Jude, Imagine, Let it Be

How many songs did John Lennon write for the Beatles?

Knowledge bases

Proposed System: CoQEx

contextualize high

confidence count contexts

discard low confidence

count contexts

Figure 1: User experience with state-of-the-art QA systems against our proposed methodology for count question answering. In
the existing setting, a user would often encounter varying counts in returned text snippets (open-domain QA), or limited context
(KB-QA). CoQEx provides a more comprehensive answer, by aggregating evidence across text snippets, contextualizing contexts
and providing instances as count explanations.

queries via three components: i) answer inference ii) answer
contextualization and, iii) answer explanation.

Given a full-fledged question or a telegraphic query
and relevant text segments, CoQEx applies joint inference
to compute a high-confidence answer for the count itself.
It provides contextualization of the returned count answer,
through semantic qualifiers into equivalent or subclass cat-
egories, and extracts a set of representative instances as
explanatory evidence, exemplifying the returned number for
enhanced credibility and user comprehension.
Contributions of this work are:

1. introducing the problem of count query answering
with explanatory evidence;

2. developing a method for inferring high-confidence
counts from noisy candidate sets;

3. developing techniques to provide answer contextual-
ization and explanations;

4. evaluating CoQEx against state-of-the-art baselines
on a variety of test queries;

5. releasing an annotated data resource with 5k count
queries and 200k text segments, available at
https://github.com/ghoshs/CoQEx.

Previous publication. The present manuscript substan-
tially extends a short paper by Ghosh et al. (2022) by a

thorough analysis of the problem of count question answer-
ing. In particular, we analyse the characteristic of real count
queries, and dissect the difficulty and tractability of each of
the subproblems. The major extensions to the short paper
are:

1. We substantially expanded the task data, and, based
on novel annotation, provide an in-depth analysis of
count query characteristics in Section 5.2. In partic-
ular, we group queries by complexity (in reach for
today’s structured approaches, in reach for textual
approaches, out of reach), and analyze baseline and
system performance for each of them (Tables 3 and
5 in 7.2 and 7.5). We also analyze the domains and
stability properties of count queries (Figures 5 and
6), and added another related dataset (NaturalQues-
tions) to corroborate the findings from our newly-
built CoQuAD dataset. Our findings include that our
proposed system is resilient to harder query types,
with comparable precision at moderate loss of recall.

2. We assess the quality of the automated ground truth
extractions in our CoQuAD dataset in comparison
with human annotations in Section 5.1. The automated
extractions match the human annotations in 84% of
the cases accepting small deviations and in 81% of the
cases they match exactly. Upon examining the causes
of incorrect ground truth extractions and we found that
a majority of errors stem from counts of subsets.

Ghosh et al.: Preprint submitted to Elsevier Page 2 of 18

https://github.com/ghoshs/CoQEx

Answering Count Questions with Structured Answers from Text

3. We provide a novel analysis of count contextualization
across different QA paradigms in Section 7.3, finding
that KB-QA and search engines struggle with this
for principled and/or pragmatic reasons, thus further
motivating our answer contextualization step.

4. We provide a full component analysis on our CoQEx
system in Section 8, specifically through Table 8 and
Figures 8, 9 and 10. A main takeaway is how signifi-
cant thresholding choices are in answer inference and
answer explanation, compared with a lower impact of
the pre-training choice and consolidation strategy. For
answer contextualization, we observe that synonyms
are easier to discern than subgroups and incompara-
bles.

5. We conduct a third user study to verify user satis-
faction with the answers provided by CoQEx in Sec-
tion 7.6. 92% of the users were at least satisfied with
the system provided answers on a five-level Likert
scale thus reinforcing the effectiveness of our system.

6. We provide a discussion in Section 9 which high-
lights open challenges for future work, specifically,
how count contexts and instance explanations coexist
and contribute to better user comprehension. We also
examine insightful case studies which show the po-
tential of CoQEx in explaining count queries through
hierarchical count contexts and instances.

2. Related Work
Where structured data is available in KBs, structured

QA is the method of choice for count question answer-
ing, and previous work of Ghosh et al. (2020) has looked
at identifying count information inside KBs. However, for
many topics, no relevant count information can be found in
KBs. For example, Wikidata contains 217 songs attributed
to John Lennon2, but is incomplete in indicating whether
these written for the Beatles or otherwise. In the KB-QA
domain, systems like QAnswer developed by Diefenbach
et al. (2019) tackle count queries by aggregating instances
using the SPARQL count modifier. This is liable to incorrect
answers, when instance relations are incomplete. Attempts
have also been made to improve recall by hybrid QA over
text and KB, yet without specific consideration of counts (Lu
et al., 2019; Xu et al., 2016).

State-of-the-art systems typically approach QA via the
machine reading paradigm (Karpukhin et al., 2020; Joshi
et al., 2020; Sanh et al., 2019; Chen et al., 2017; Dua et al.,
2019), where the systems find the best answer in a given
text segment. The retriever-reader approach in open-domain
QA uses several text segments to return either a single best
answer (Chen et al., 2017; Wang et al., 2018) or a ranked list
of documents with the best answer per document (Karpukhin
et al., 2020). The DPR system by Karpukhin et al. (2020)3

2https://w.wiki/4XVq
3http://qa.cs.washington.edu:2020

returns approximately 180 from its rank-1 text segment to
both, the simple John Lennon query, and the refined variant
with . . . for the Beatles. The other top-10 snippets include
false results such as five and contradictory information such
as 180 jointly credited (as if Lennon had not written any
songs alone). Thus, QA systems are not robust (yet) and
lack explanatory evidence beyond merely returning the top-
ranked text snippet.

Attempts have also been made to improve recall by
hybrid QA over text and KB, yet without specific consid-
eration of counts (Lu et al., 2019; Xu et al., 2016; Saha Roy
and Anand, 2020). Search engines can answer simple count
queries from their underlying KBs, if present, a trait which
we exploit to create our CoQuAD dataset (Section 5). But
more often they return informative text snippets, similar
to QA-over-text systems. The basic Lennon query has a
highest-ranked Google snippet with more than 150 when
given the telegraphic input number of songs by John Lennon
and almost 200 when given the full-fledged question how
many songs did John Lennon write. For the latter case,
the top-ranked snippet talks about the composer duo John
Lennon and Paul McCartney. When refining the query by
qualifiers, this already puzzling situation becomes even more
complex with 84.55 of 209 songs being ranked first followed
by varying counts such as 18 Beatles songs (co-written with
McCartney) and 61 (written separately). Because of the lack
of consolidation, the onus is on the user to decide whether
there are multiple correct answers across text segments.

In Mirza et al. (2018), it is reported that 5%-10% of
queries in popular QA datasets are count queries. Current
text-based QA systems and datasets largely ignore con-
solidation over multiple documents, since the target is to
produce a single answer span or document. QA systems are
tested on reading comprehension datatsets, the most popular
being SQuAD (Rajpurkar et al., 2016), CoQA (Reddy
et al., 2019) and more recent being DROP (Dua et al.,
2019), on open domain QA datatsets such as Natural Ques-
tions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017) and on KBs with datasets such as LC-QuAD 2.0 (Dubey
et al., 2019), WebQuestions (Berant et al., 2013) and QALD (Us-
beck et al., 2018). Reading comprehension and open domain
QA datasets are annotated with answer spans, while the
datasets for KB-QA come with a single or a list of answers,
but no further context. More recent KB-QA datasets, such
as VQuAnDa (Kacupaj et al., 2020) and ParaQA (Kacupaj
et al., 2021) provide answer verbalizations, such that each
KB answer comes with one or several paraphrased responses
in natural language. Multi-document-multi-hop reasoning
datasets, in turn, focus on chaining evidence (Dua et al.,
2019; Bauer et al., 2018).

The evaluation metrics for reading-comprehension style
benchmarks typically employ strict matching requirements,
like measuring accuracy, F1-score and exact match (Zeng
et al., 2020). On a question level, these metrics measure the
token-level overlap, which does not transfer well to count

Ghosh et al.: Preprint submitted to Elsevier Page 3 of 18

https://w.wiki/4XVq
http://qa.cs.washington.edu:2020

Answering Count Questions with Structured Answers from Text

Answer

Contextualization

Candidate

Generation

Relevant text

segments

CoQuAD

Count

Extraction

Weighted median: 180

Answer Spans

Count

Consolidation

Counts

Representative

Extraction

Answer Inference

Q
u

e
r
y
:

H

o
w

m

a
n

y

s
o

n
g
s

d

i
d

J
o

h
n

L
e
n

n
o

n

w

r
i
t
e

f
o

r

t
h

e

B

e
a
t
l
e
s
?

+

Count-modified noun phrases (CNP)

CNP

rep

: 180 songs

Synonyms: 200 co-written, 150 tracks

Subgroups: 61 solo, 23 vocals

Prediction

Category

Classification

Candidate

Generation

NER

Instance

Consolidation

Instances

Enumerating

instances

Hey Jude

Imagine

Let it Be

Answer Spans

Answer Explanation

Ranked

Instances

CNPs

CNP

rep

Train

SQuAD

Train

Figure 2: System overview of CoQEx from Ghosh et al. (2022).

queries, especially counts which do not have one authorita-
tive answer and are an inference over multiple documents.
We propose relaxed metrics for evaluation in Section 6.

It is recognized that just literally answering questions is
often not sufficient for use cases. One line of work by Kacu-
paj et al. (2020, 2021), focuses on answer verbalizations of
the formal SPARQL query responses. Kacupaj et al. (2020)
tackles this by returning comprehensive answer in full sen-
tences, using templates, and (Kacupaj et al., 2021) is a
framework for generating verbalized answers given a natural
language question, its logical form and the extracted answer.
Another line, Krishna et al. (2021), concerns long form
question answering, where the QA model retrieves multiple
relevant documents to generate a whole answer paragraph.
The ELI5 dataset by Fan et al. (2019) contains diverse open-
ended queries with supporting information from relevant
web sources. While the setting is related, long form QA
is concerned with generating textual answers evidenced on
multiple documents, while we focus on answering count
queries by consolidating counts and grounding them in
instances.

3. Design Space and Architecture
Traditional open domain QA architectures involve query

analysis, document retrieval and answer extraction, where
named-entity recognition (NER) is an important component
for recognizing named entities of the answer type (Zhu
et al., 2021), with the Text REtrieval Conference (TREC)
QA tracks leading the research in fact-based question an-
swering (Voorhees, 2001). Current research employs deep
learning with the benefit of achieving end-to-end trainable
systems. In this direction we discussed open-domain QA
systems in the reader-retriever paradigm, KB-QA which
translates natural language questions to structured queries
finally executed over a KB to return the answer and the
hybrid QA setting which uses a mix of structured KBs and
texts to answer natural language questions.

We approach count query answering by a combination
of per-document answer span prediction, context extraction,
and consolidation of counts and instances across documents.
Figure 2 gives the overview of CoQEx. We consider as input
a query that asks for the count of named entities that stand

in relation with a subject, for instance full queries like How
many songs did John Lennon write for the Beatles, or a
keyword query like songs by lennon.

We further assume that relevant documents or passages
are given. This could be the result of a standard key-
word/neural embedding-based IR procedure over a larger
(locally indexed) background corpus, like Wikipedia or the
Web. We explain the methodology of CoQEx in the next
section.

4. Methodology
CoQEx extracts counts and instances (entity-mentions)

from the text segments to subsequently i) consolidate the
counts to present the best answer, ii) present contextual-
ization as a means to semantically qualifying the predicted
count, and iii) ground the count in instances. We denote the
set of relevant text segments for a query by 𝐷.
4.1. Answer Inference

In order to generate count candidates, we use the popular
SpanBERT model from Joshi et al. (2020), trained on the
CoQuAD train split. Span prediction models return general
text spans, which may contain worded answers (five children,
Conf = 0.8), modifier words and other context (17 regional
languages, Conf = 0.75), where Conf is the confidence
score of the model. These answer spans have two compo-
nents - the count itself and qualifiers, which we separate with
the help of fixed rules and the CogComp Quantifier by (Roy
et al., 2015).

Algorithm 1 shows the outline for answer inference. We
run all relevant documents, 𝐷 for a given query through the
span prediction model to get the candidate spans comprising
the answer span, 𝑐.Span, and model confidence, 𝑐.Conf,
(Line 3-4). If the span is non-empty and confidence of the
model is higher than a threshold, 𝜃, then we extract integer
count from the span using the EXTRACTCOUNT function
(Line 5-6). If the integer extraction in non-empty, we save the
span, the extracted integer and the model confidence (Lines
7-9).

The EXTRACTCOUNT() sequentially applies rule-specific
conversions before applying CogComp Quantifier to achieve
maximum recall. The function first applies type conversion
(int(17)→17, float(17.0)→17.0), followed by a dictionary
based look-up for worded to integer conversion (seven-
teen→17) and lastly the CogComp Quantifier, proceeding
only when previous conversions yield empty results. The
counts are further cleaned by removing fractions ∈ (0, 1),
since counts are whole numbers.

If there is at least one count extracted from the relevant
document set, we consolidate the counts using either of the
proposed consolidation methods defined in the CONSOLI-
DATE function (Lines 10-13), else the answer inference is
empty (Line 15).

To consolidate the resulting candidate counts into a
prediction 𝐶pred, we compare four methods:

Ghosh et al.: Preprint submitted to Elsevier Page 4 of 18

Answering Count Questions with Structured Answers from Text

1. Most confident: The candidate given the highest con-
fidence by the neural model. This is commonly used
in textual QA (Chen et al., 2017; Wang et al., 2018).

2. Most frequent: A natural alternative is to rank answers
by frequency, and prefer the ones returned most often.

While most confident may be susceptible to single out-
liers, most frequent breaks down in cases where there are
few answer candidates. But unlike textual answers, numbers
allow further statistical aggregation:

3. Median: The midpoint in the ordered list of candi-
dates.

4. Weighted Median: The median can be further adapted
by weighing each candidate with the model’s score.

For example, for the candidate set {1500.9, 1600.8, 1800.4,
1800.4, 2100.3} (confidences as subscripts), most confident
would output 150, most frequent and median would return
180, and the weighted median 160.
Algorithm 1 Extracting answer inference
Input: Count query, 𝑞,

set of relevant text segments, 𝐷,
span prediction model, SPANPREDICTION,
span selection threshold, 𝜃,
count extraction function, EXTRACTCOUNT,
consolidation function, CONSOLIDATE.

Output: Answer Inference, 𝐶pred,
List of count span and extracted integer tuples, 𝐶 .

1: 𝐶 ← {} ⊳ Passed to Algorithm 2
2: WeightedC ← {} ⊳ Counts with confidence
3: for 𝑑 ∈ 𝐷 do
4: 𝑐 ← SPANPREDICTION(𝑑, 𝑞)
5: if 𝑐.Span ≠ None and 𝑐.Conf > 𝜃 then
6: 𝑖 ← EXTRACTCOUNT(𝑐.Span)
7: if 𝑖 ≠ None then
8: C ← C ∪ (𝑐, 𝑖)
9: WeightedC ← WeightedC ∪ (𝑖, 𝑐.Span)

10: if WeightedC ≠ {} then
11: WeightedC ← SORTASCENDING(WeightedC)
12: ⊳ Return the weighted median of the counts. ⊲
13: 𝐶pred ← CONSOLIDATE(WeightedC)
14: else
15: 𝐶pred ← 𝑁𝑢𝑙𝑙
16: return 𝐶pred, 𝐶

4.2. Answer Contextualization
The answer candidates from the previous module often

contain nouns with phrasal modifiers, such as 17 regional
languages. We call these count-modified noun phrases (CNPs).
These CNPs stand in some relation with the predicted
count from the answer inference module as explained in
Algorithm 2. The representative CNP, CNPrep, which best
accompanies the predicted count is first chosen and then
compared with the remaining CNPs. Since answer inference

uses a consolidation strategy, we select the CNP with count
equal to 𝐶pred having the highest confidence as CNPrep (Line
2).

The remaining CNPs are categorized as follows:
1. Synonyms: CNPs, whose meaning is highly similar to

CNPrep and accompanying count is within a specified
threshold, 𝛼, of the predicted count (Lines 6-7), where
𝛼 is between 0% and 100%, 0 being most restrictive.

2. Subgroups: CNPs which are semantically more spe-
cific than CNPrep, and are expected to count only a
subset of the instances counted by CNPrep, such that
the accompanying count is lower than the synonyms
set (Lines 8-9).

3. Incomparables: CNPs which count instances of a
completely different type indicated by negative cosine
similarity (Lines 4-5) or an accompanying count
higher than the synonyms (Line 11).

Algorithm 2 CNP Category Classifier
Input: Answer Inference, 𝐶pred,

synonym threshold, 𝛼,
list of count spans and extracted integer tuples, 𝐶

(from Algorithm 1)
Output: Representative CNP, CNPrep,

List of CNP categories, Categories
1: Synonyms, Subgroups, Incomparables ← {}, {}, {}
2: CNPrep ← argmax

𝑐
{𝑐.Conf ∣ 𝑖 = 𝐶pred, (𝑐, 𝑖) ∈ 𝐶}

3: for (𝑐, 𝑖) ∈ 𝐶 ⧵ (CNPrep, 𝐶pred) do
4: if COSINESIM(𝑐.Span,CNPRep.Span) <= 0 then
5: Incomparables ← Incomparables ∪ 𝑐
6: else if 𝑖 ∈ 𝐶pred ± 𝛼 then
7: Synonyms ← Synonym ∪ 𝑐
8: else if 𝑖 < 𝐶pred − 𝛼𝐶pred then
9: Subgroups ← Subgroups ∪ 𝑐

10: else
11: Incomparables ← Incomparables ∪ 𝑐
12: return CNPrep, Synonyms, Subgroups, Incomparables

We assign these categories based on (textual) semantic re-
latedness of the phrasal modifier, and numeric proximity
of the count. For example, regional languages is likely a
subgroup of 700 languages, especially if it occurs with
counts ⟨23, 17, 42⟩. tongue is likely a synonym, especially if
it occurs with counts ⟨530, 810, 600⟩. Speakers is most likely
incomparable, especially if it co-occurs with counts in the
millions. CNPs with embedding-cosine similarity (Reimers
and Gurevych, 2019) less than zero are categorized as in-
comparable, while from the remainder, those with a count
within ±𝛼 are considered synonyms, lower count CNPs
are categorized as subgroups, and higher count CNPs as
incomparable.

For instance, for the query on the languages spoken in
Indonesia, with a prediction 700, estimated 700 languages
would be the CNPrep since it has the highest confidence (see

Ghosh et al.: Preprint submitted to Elsevier Page 5 of 18

Answering Count Questions with Structured Answers from Text

Table 1
CNPs with their categories for a query and confidence scores
as subscripts.

Query How many languages are spoken in Indonesia?
CNPRep estimated 700 languages(0.8)
Synonyms 700 languages(0.7), about 750 dialects(0.7)
Subgroups 27 major regional languages(0.6), 5 official languages(0.8)
Incomparables 2000 ethnic groups(0.4), 85 million native speakers(0.5)

Table 1. {700 languages, 750 dialects} would be classified
as synonyms, {27 major regional languages, 5 official lan-
guages} as subgroups and {2000 ethnic groups, 85 million
native speakers} as incomparables (Table 1).
4.3. Answer Explanation

Beyond classifying count answer contexts, showing rel-
evant sample instances is an important step towards explain-
ability. To this end, we aim to identify entities that are among
the ones counted in the query using Algorithm 3.

Let 𝐼 denote the inverted dictionary of instances where
𝐼[𝑖] contains the text IDs and confidence scores of the
instance 𝑖. We collect the answers from a QA model to create
a more precision-oriented candidate space. We again use
the SpanBERT model (fine-tuned on SQuAD 2.0 dataset) to
obtain candidates (tuples comprising answer span, 𝑐.Span,
and the model confidence, 𝑐.Conf) from every document
(Lines 4-5), this time with a modified query, replacing “how
many” in the query with “which” (or adding it), so as to not
confuse the model on the answer type (Line 1). If the span
is non-empty and has a confidence higher than threshold, 𝜃,
we extract named entities from the span (Lines 7-8) using
an off-the-shelf NER. We create an inverted index of these
instances, keeping track of the text segment it belongs to
and the span prediction (Lines 9-10). The instances are
then scored globally using either of the following alternative
consolidation scoring approaches defined in the CONSCORE
function in Lines 11-12. The instances are then ranked in
decreasing order of their consolidated scores (Line 13).

The alternatives for instance consolidation are as fol-
lows. We normalize the consolidation scores for comparison
across instances and strategies. All consolidation strategies
lie between [0, 1].

1. QA w/o Consolidation. In the spirit of conventional
QA, where results come from a single document, we
return instances from the document with the most
confident answer span.

2. QA + Context Frequency. The instances are ranked by
their frequency, 𝑆[𝑖] = |𝐼[𝑖]|

|𝐷|

.
3. QA + Summed Confidence. We rank the instances

based on the summed confidence of all answer spans
that contain them, 𝑆[𝑖] =

∑

(⋅,𝑐)∈𝐼[𝑖] 𝑐.Conf
|𝐼[𝑖]| .

4. QA + Type Compatibility. Here instances are ranked
by their compatibility with the query’s answer type,
extracted via the dependency parse tree. We obtain the

answer type by extracting the first noun token and any
of its preceding adjectives from the dependency parse
tree of the query. We form a hypothesis “(instance)
is a (answer type)” and use the probability of its en-
tailment from the parent sentence in the context from
which the instance was extracted to measure type com-
patibility. We use a transformer-based textual entail-
ment model by Liu et al. (2019) to obtain entailment
scores, which are again summed over all containing
answer spans, such that, 𝑆[𝑖] =

∑

(𝑑,𝑐)∈𝐼[𝑖] ENT(𝑖,𝑑,𝑐,𝑞)
|𝐼[𝑖]| .

Here, the function ENT takes the instance 𝑖, the answer
spans 𝑐 to determine the parent sentence in the text
segment 𝑑, and query 𝑞 to determine the answer type
for the hypothesis.

Algorithm 3 Extracting answer explanations
Input: Count query, 𝑞,

set of relevant text segments, 𝐷,
span predictor model, SPANPREDICTION,
candidate selection threshold, 𝜃,
named-entity recognizer, NER,
instance consolidation function, CONSCORE

Output: A ranked list of instances 𝐼Ranked
1: 𝑞′ ← 𝑞.replace(“how many”,“which”)
2: 𝐼 ← {} ⊳ Inverted dictionary of instances.
3: 𝑆 ← {} ⊳ Consolidated score for instances.
4: for 𝑑 ∈ 𝐷 do
5: 𝑐 ← SPANPREDICTION(𝑑, 𝑞′)
6: ⊳ Get all instances from the span. ⊲
7: if 𝑐.𝑆𝑝𝑎𝑛 ≠ None and 𝑐.Conf > 𝜃 then
8: 𝐼𝑑 ← NER(𝑐.𝑆𝑝𝑎𝑛)
9: for 𝑖 ∈ 𝐼𝑑 do

10: 𝐼[𝑖] ← 𝐼[𝑖] ∪ (𝑑, 𝑐)
11: for 𝑖 ∈ 𝐼 do
12: 𝑆[𝑖] ← CONSCORE(𝐼[𝑖], 𝐷)
13: 𝐼Ranked ← SORTDESCENDING(𝐼, key = lambda i ∶

𝑆[𝑖])
14: return 𝐼Ranked

5. The CoQuAD Dataset
5.1. Dataset construction
Query collection. Existing QA datasets only incidentally
contain count queries; we leverage search engine autocom-
plete suggestions to automatically compile count queries that
reflect real user queries (Sullivan, 2020). We provide the
Google search engine with iterative query prefixes of the
form “How many𝑋”, where𝑋 ∈ {𝑎, 𝑏,… , 𝑧, 𝑎𝑎, 𝑎𝑏,… , 𝑧𝑧,
𝑎𝑎𝑎, 𝑎𝑎𝑏,… ,… , 𝑧𝑧𝑧}. Similar to the candidate generation
from patterns used in Romero et al. (2019), we generate
prefixes where 𝑋 varies from a single character up to three
characters in the English alphabet. We use the SERP API4
to collect the query autocomplete suggestions for the above

4https://serpapi.com

Ghosh et al.: Preprint submitted to Elsevier Page 6 of 18

https://serpapi.com

Answering Count Questions with Structured Answers from Text

Selected queries

Discarded queries

Figure 3: Query autocomplete suggestions for the query pre-
fixes: how many a and how many nov. Queries with no named-
entity mentions are discarded (here, red strike-through).

query prefixes and keep those with at least one named-
entity (to avoid too general queries). Figure 3 illustrates
autocomplete suggestions for two query prefixes. Queries
with at least one named-entity are selected (green underline)
and the others with are discarded (red strike-through). Of
the 69𝑘 autocomplete suggestions collected, around 11.9𝑘
queries have at last one named-entity.
Ground Truth Counts. We automatically obtain count
ground truth by collecting structured answers from the same
search engine. Executing each query on Google, we scrape
knowledge graph (KG) answers and featured snippets, using
an off-the-shelf QA extraction model (Sanh et al., 2019) to
obtain best answers from the latter.

We further clean the dataset by removing queries where
no counts could be extracted from the text answers and
applying simple heuristics to remove queries dealing with
measurements. We achieve this by using the CogComp
Quantifier which serves a dual purpose. We use it to nor-
malize the text answers to integer counts and identify empty
extractions or non-entity answer types when any word rep-
resenting measurement is returned as units of the identified
quantity.

This gives us the ground truth for 5k queries obtained
from either KG or from featured snippets. There also exists
4k count queries with no directly available ground truth
which we retain in the dataset for evaluation purposes.
We manually annotate a sample of 100 queries from those
without automated ground truth.
Text Segment Annotation. Next, we scrape the top-50
snippets per query from Bing, and obtain text segment
ground truth by labelling answer spans returned by the
CogComp Quantifier Roy et al. (2015) as positive when the
count lies within ±10% from the ground truth. There are
around 800 queries with no positive snippets, which we do
not discard, so the system is not forced to generate an answer.
In the end we have 5162 count queries with automated
ground truth, and an average of 40 annotated text segments
per query.
Evaluation Data. We use 80% of the count queries with
automated ground truth for training and 20% for test and
development. We report our evaluations on the hand an-
notated subset of 322 CoQuAD queries which consists of

both the test data, with the automated ground truths, and
queries without any direct answers. We manually annotate
the queries with categories, counts, and count contexts. We
also track the effect of time, availability of instances and
count contexts on these queries. 142 queries that would
benefit from instance explanations have at least top-5 promi-
nent manually annotated instances for evaluating answer
explanations.
Quality Assessment. Our evaluation data comprises around
69% of automated GT extractions from the Google KG and
featured text snippets and 31% of manually annotated ground
truths. We manually searched and wrote down ground truths
for the 222 queries, to obtain insights into the accuracy
of the automated ground truths. We gave ourselves access
to the search-engine result page (see Figure 4) used by
the automatic extractor, and could hence refer to the same
snippet and source links, from which the automated ground
truth was extracted. We also allowed ourselves to inspect
the provided links, in case the snippets alone did not give
a conclusive answer. In a few cases, we could only provide
estimates, or counts of enumerated instances, if no source
gave a definitive count answer.

We evaluate the deviation of the automated answer from
the human annotation by calculating the ratio of the smaller
of the two annotations to the larger of the two. A ratio of
1 is a perfect match, while lower ratios suggest deviations.
We find that in 81% of cases, automated and manual ground
truth matched perfectly, and for 84%, the deviation was no
more than 10% upward or downward. This is encouraging
quality, at a level well above what is typically required
in supervised Mmachine learning (e.g., distant supervision
for relation extraction often works with training data with
accuracy around 50%).

Nonetheless, it is insightful to see where the automated
ground truth is incorrect. A majority of errors (16 of 25
queries) stem from counts of subsets, followed by 8 anno-
tations that count a superset. For instance, the automated
answer for the number of bruce lee movies is at least 18,
a lower bound, while the human annotation is 37. The
automated answer for tgi friday restaurants in the United
States is 900, extracted from a snippet which say “There are
over 900 T.G.I. Friday’s branded restaurants in 60 countries
worldwide … There are 566 restaurants in the U.S. . . . ”.
5.2. Query Analysis

Dedicated count question answering is a novel topic for
question answering, and as such, we first aim to gain insights
into the nature of typical count queries. Our analysis is
divided into four questions.

1. What ground truths are available for these queries?
2. What are the modes of count answers?
3. What domains do these queries cover, and how topi-

cally stable are they?
4. What are their syntactic characteristics?

Ghosh et al.: Preprint submitted to Elsevier Page 7 of 18

Answering Count Questions with Structured Answers from Text

…

(a) (b)

Figure 4: Example view of the search-engine result pages for two queries in JSON format. (a) how many kubrick movies with
answer from a knowledge graph and (b) how many satellites does earth have with an answer from a featured snippet.

or
ga

ni
za

tio
n

en
te

rta
in

m
en

t
de

m
og

ra
ph

y
lit

er
at

ur
e

in
du

st
ry

in
fra

st
ru

ct
ur

e
ad

m
in

ist
ra

tio
n

sp
or

ts
ge

og
ra

ph
y

po
p

cu
ltu

re
hi

st
or

y
po

lit
ics

ed
uc

at
io

n
ne

ws
sc

ie
nc

e
ot

he
r

la
ng

ua
ge

cu
ltu

re
po

p
cu

ltu
tre

so
cia

l
wi

ld
lif

e
ar

ch
ite

ct
ur

e
he

al
th

fin
an

ce

topics

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
percentage

Figure 5: Distribution of topics in CoQuAD.

We look into the evaluation data of 322 CoQuAD queries
to answer these questions unless specified otherwise.
Nature of ground truth. When we automate the ground
truth extraction process, we realize that there exists structure
to the results provided by the search engines as illustrated in
Figure 7. Answers to a small minority of roughly 2% of the
queries come from the internal KG. These KG-answerable
queries have well-structured outputs. In the case of count
queries the answers returned are counts and the path to the
KG answer is also displayed to the user.

The majority of the ground truth labels, (54% of all
CoQuAD queries), are extracted from the top snippet. These
snippets rank at the top of the search results, identified as

st
ab

le

ne
ar

-c
on

tin
ou

s

lo
w-

vo
ta

til
e0

20

40

60

pe
rc

en
ta

ge

KG

ne
ar

-c
on

tin
ou

s

st
ab

le

lo
w-

vo
ta

til
e0

20

40

Featured snippet

ne
ar

-c
on

tin
ou

s

lo
w-

vo
ta

til
e

st
ab

le

0

20

40

60
No direct answer

Figure 6: Time variance of CoQuAD queries by answer source.

featured snippets and are accompanied by an answer span,
highlighted within the text or as a heading of the snippet.
We refer to such queries as snippet-answerable, and provide
two examples in Figure 7.

The queries which yield no automated ground truths
(44% of all CoQuAD queries) come under the No direct
answer category. As illustrated in Figure 7, these queries
only return ranked page snippets, due to the lack of any KG
answer or featured snippet.

Of the automated ground truth labels, the vast majority
come from featured Google snippets, while only 2% come
directly from the Google KG. These labels are thus comple-
mented by a more balanced manual annotation, where we
manually labelled 50 questions that were KG answerable,
172 that were snippet-answerable, and 100 without any
automated ground truth.
Answer modes. We have identified three modes how QA
systems can answer count queries - via counts, CNPs and
instances.

Ghosh et al.: Preprint submitted to Elsevier Page 8 of 18

Answering Count Questions with Structured Answers from Text

KG-answerable Snippet-answerable

No direct answer

Figure 7: Nature of ground truths extracted. KG-answerable queries show the path (entity and relation) and aggregate used
(Count). Snippet-answerable queries have a featured snippet with a highlighted answer displayed at the top of the snippet (228
languages) or within the snippet which then can be extracted by any off-the-shelf extractive QA models. No direct answer type
of queries do not have any automated ground truth as the results returned only ranked.

Since all KG-answerable and snippet-answerable queries
have ground truth counts, we focus on the CNPs and in-
stances. If we go by the conventional method of QA with-
out any consolidation, and analyse the paths returned by
KG answerable queries and the featured snippets, we find
that KG-answerable queries are usually simply related and
have rare occurrences of any semantic qualifiers (equivalent
to CNPs) with 0 occurrences in the CoQuAD annotated
queries. Featured snippets on the other hand contain CNPs
in 61% of the cases. Instances come up in 90% of the KG-
answerable count queries and in only 20% of the snippet-
answerable count queries.

We then proceed by annotating the CoQuAD queries
with binary variables indicating whether semantic qualifiers
and instance explanations are necessary. For instance, the
query how many novels did jane austen complete would
benefit from instances and CNPs which differentiate her
finished and unfinished works or at least hint at the fact.

We found that indeed helpful semantic qualifiers for
KG-answerable queries is necessary in around 8% of the
queries. In snippet-answerable queries and queries with no
direct answers, semantic qualifiers are desirable in more
than 81.3% of the cases. As far as instance explanations are
concerned, they are desirable in all KG-answerable queries
and in 80.8% of the snippet-answerable queries. We already
see a gap between the desired explanatory evidence and
what is available when no consolidation is performed. In
Section 9, we further report on these answer modes in light
of the predictions made by CoQEx to see whether this gap
can be reduced.
Domain and stability. We assigned high-level topics to
the queries. We went through each of the 322 queries,
introducing a new topic label if none of the previous ones

make a good match. We found that queries in CoQuAD
cover a range of topics, notably organizations (18.6%), en-
tertainment (16.4%), demography (10.5%), literature (6.8%),
industry and infrastructure (12.7%) (see Figure 5).

A second important dimension concerns their temporal
stability. Queries whose result continuously changes are nat-
urally much harder to deal with, especially if fluctuations are
big. We find that 30% of query results are fully stable (a com-
pany’s founders, casts in produced movies), 20% are low-
volatile (lakes in a region, band members of an established
but active band), 50% are near-continuous (employment
numbers, COVID cases). In Figure 6 we break it down by
answer source (KG, featured snippet, and no direct answers),
and we see that the majority of the KG answerable queries is
stable (64%) and near-continuous for the rest. Featured snip-
pet can be used to answer time-variant queries, though near-
continuous queries are a majority (46.5%). Near-continuous
queries form an overwhelming majority (66%) where search-
engines do not provide any direct answers. Only about 13%
of queries with no direct answers are stable, which means
that search-engines can handle such queries with little to no-
variance.
Syntactic properties. We identify different query compo-
nents, namely the named entities, the relation, the type of
the entities being counted (conventionally referred to as the
type of the answer entity), and remaining context as a bag
of words. We perform basic natural language processing5 to
obtain the query components as follows.

• Named entity: tokens were extracted if NER returned
a label or if the tokens were tagged propoer noun by
the POS tagger.

5We use SpaCy’s en_core_web_sm model.

Ghosh et al.: Preprint submitted to Elsevier Page 9 of 18

Answering Count Questions with Structured Answers from Text

• Relation: tokens were identified when a token had a
POS tag = verb and the token was the root of the
dependency parse tree.

• Answer type: tokens identify the type of the counted
entities. The first noun token from the dependency
parse tree with any of it’s preceding adjective tokens
formed the answer type. This is used by CoQEx to
determine the type compatibility of the instance can-
didates (discussed in the methodology Section 4.3 on
the QA + Type Compatibility consolidation strategy).
For example, if the query counts restaurants, cities,
or cartoon characters, we use text entailment to check
whether candidate named entities are of the respective
type.

• Context: tokens were all remaining keyword tokens,
i.e., excluding conjunctions, determiners, auxiliary
verbs, pronouns, punctuation.

The average query length is 6.40 words, with an aver-
age of 1.08 named entities per query implying that most
queries count entities in a simple relation to one named
entity. We found that 95% of the 322 queries returned non-
empty answer types, with more than 200 unique phrases, for
instance, sibling, movie, employee, nfl stadium, real estate
agent, czech player. The queries spanned over 49 different
relations.
Our research data is made publicly available6.

6. Experimental Setup
While we can use regular IR metrics of precision and

recall for evaluating answer explanations (Mean Average
Precision@k, Recall@k, Hit@k and MRR) and accuracy
of classification for evaluating count context categories, we
need a new metric for counts. This is because counts come
with a natural order and distance function (e.g., 507 may be
a good answer when the ground truth is 503, but not when it
is 234), for which exact String match or embedding distance
is not a suitable metric.
6.1. Evaluation Metrics

We report the following evaluation metrics for measur-
ing count inference.

1. Relaxed Precision (RP) is the fraction of answered
queries where the prediction lies within ±10% of the
ground truth and is reported as a percentage.

2. Coverage (Cov) measures the fraction of queries that
a systems returns an answer for and is reported as a
percentage.

3. Relaxed Precision-Coverage trade-off (P/C) is the
harmonic mean of the relaxed precision and coverage
values, reported as a percentage.

6https://github.com/ghoshs/CoQEx

4. Proximity ∈ [0, 1], which is the ratio of the minimum
of the predicted and the gold answer to the maximum
of the two, averaged over all queries.

Since we deal with non-canonicalized surface forms of
instances, we maintained a list of aliases, obtained from
Wikidata, for the annotated prominent instances. An in-
stance is relevant if its length-normalized Levenshtein dis-
tance Navarro (2001) from any of the aliases is less than 0.1.
We evaluate answer explanations on the following metrics:

1. Mean Average Precision (MAP) is the fraction of
retrieved entities that are relevant, averaged over the
queries.

2. Average Recall (AR) is the fraction of ground truth
entities retrieved, averaged over the queries.

3. Hit@k is the percentage of queries with at least 1
relevant answer in the top-k.

4. Mean Reciprocal Rank (MRR) is the inverse of the
rank of the first relevant result averaged across all
queries.

The CNPs are evaluated based on the accuracy of the
classified labels of Synonyms, Subgroups and Incompara-
bles, measured as the ratio of correct predictions to the total
predictions in each class.
6.2. Baselines

We compare our proposed system with two complemen-
tary paradigms.

1. Knowledge-base question answering: QAnswer (Diefen-
bach et al., 2019).

2. Commercial search engine QA: Google Search Direct
Answers (GoogleSDA). In other words, we scrape the
structured results from the result page of the Google
Search engine.

For fairness to QAnswer, which specifically deals with
count queries by aggregating on top of the SPARQL query,
we queried the system7 twice - the original count query (for
the count answer) and a modified variant as in Section 4.3,
i.e., replacing “how many” with “which”. We then post-
processed the results to extract count and instances. For eval-
uating instances by GoogleSDA, we post-processed knowl-
edge graph and featured snippet of the search engine result
page, keeping items from list-like structures as instances
ranked in their order of appearance.
6.3. Datasets

In order to test the generalizability of CoQEx we present
the results on count queries from multiple datasets in addi-
tion to CoQuAD:

7QAnswer API at https://qanswer-core1.univ-st-etienne.fr/

swagger-ui.html

Ghosh et al.: Preprint submitted to Elsevier Page 10 of 18

https://github.com/ghoshs/CoQEx
https://qanswer-core1.univ-st-etienne.fr/swagger-ui.html
https://qanswer-core1.univ-st-etienne.fr/swagger-ui.html

Answering Count Questions with Structured Answers from Text

Table 2
Comparing baselines on answer inference results (in percentages), where RP= relaxed precision, Cov=coverage and P/C=relaxed
precision-coverage trade-off.

System CoQuAD LCQuADcount Stresstest NaturalQuestions
RP Cov P/C RP Cov P/C RP Cov P/C RP Cov P/C

QAnswer (Diefenbach et al., 2019) 6.6 96.2 12.4 45.0 96.1 61.3 9.0 100 16.5 12.5 98.8 22.1
GoogleSDA 93.2 18.3 30.6 44.4 8.6 14.4 79.3 29.0 42.4 94.4 22.6 36.4
CoQEx 37.7 84.7 52.2 13.6 49.3 21.3 43.6 91.6 59.1 43.0 91.6 58.5

1. 100 count queries from an existing dataset LCQuAD
(Dubey et al., 2019),

2. A manually curated dataset of 100 challenging count
queries called Stresstest, and

3. 84 count queries found in the Natural Questions
(Kwiatkowski et al., 2019) dataset. These queries are
similar in nature to our CoQuAD queries (sample of
real user queries from Google), but not subject to
our own scraping and filtering, and thus provide a
corroboration signal for our larger CoQuAD dataset.

6.4. Implementation Details
The candidate generation steps for answer inference

and explanation uses two instances of a span prediction
model Joshi et al. (2020). The model for answer inference is
trained on CoQuAD for 2 epochs, at a learning rate of 3𝑒−5
using an Adam optimizer. An input datapoint for training
consists of a query, a text segment and a text span containing
the count answer (empty if no answer). We train over 3 seeds
and report the average score on the test data. For getting
the instances from the answer spans, we use the pre-trained
SpaCy NER model8. The model for answer explanation is
trained on SQuAD 2.0.

7. Results
7.1. Baseline Comparison on Answer Inference

Table 2 shows the answer inference performance of
CoQEx against the baselines on different datasets. We im-
prove upon Ghosh et al. (2022) by using a refined count
extractor and also report the performance on a new dataset.
The RP-Coverage trade-off metric highlights the advantages
provided by CoQEx.

In both CoQuAD and Natural Questions datasets Google-
SDA has an RP above 90%, albeit for very low coverage,
whereas QAnswer has a high coverage, more than 96% in
all datasets with poor RP. CoQEx not only provides a high
coverage, but also a decent RP, with the improved version
increasing RP by 10% on CoQuAD. Except on the LCQuAD
dataset, CoQEx provides a better trade-off than the baselines.

On the LCQuAD dataset, designed specifically for KG
queries, it can be argued that as the LCQuAD queries are
created from question templates which in turn are generated
from SPARQL templates, the semantic gap between the nat-
ural language query and its KG counterpart is much lower.

8https://spacy.io on the en_core_web_sm model.

This aids QAnswer and hinders natural language document
retrievers used in the other baselines. The fact that CoQEx
has the lowest coverage in LCQuAD among all datasets also
backs this hypothesis.

The manually created Stresstest dataset shows the poten-
tial of CoQEx in terms of coverage and RP, even though RP
of GoogleSDA is higher. Here results indicate that reliance
on structured KBs (QAnswer) is not sufficient for general
queries, and robust consolidation from crisper text segments
is necessary.
7.2. Effect of Query Types on Answer Inference

In Table 3, we analyse how QA systems perform on the
answer inference when a query is KG-answerable, snippet-
answerable and when a query is not directly answerable. The
difficulty in answering the queries increases with each type.

We observe that the baselines achieve their best perfor-
mance on KG-answerable queries. While QAnswer has a
high coverage, the RP metric is quite low, even for KG-
answerable queries. GoogleSDA has by design 100% pre-
cision in KG-answerable queries. While its coverage goes
down drastically with increasing difficulty levels of the
queries, barely above 5%, the RP remains respectable. Co-
QEx maintains a decent balance between coverage and RP
values in all three scenarios.

Since, CoQEx considers only text, it loses to GoogleSDA
in KG-answerable queries by a margin, but is still better than
QAnswer. In snippet-answerable queries and queries with no
direct answers, CoQEx provides a much better P/C trade-off
than the baselines.
7.3. Evaluating Answer Contexualizations

For evaluating count contextualizations, we cannot di-
rectly compare CNPs acquired through CoQEx with the
other baselines, especially in the KB-QA setting since they
return answers with little to no context.

Semantic qualifiers are still common in GoogleSDA fea-
tured snippets, coming up in 61% of queries. While semantic
qualifiers can be expressed in KG answers (volcanic islands
in Hawaii⇒islands→Hawaii→volcanoes), this rarely shows
up in GoogleSDA for two reasons, i) KG answers are pro-
vided for short (single entity) and simple queries (relations
with no semantic qualifiers) and ii) KG answers are provided
for very popular queried entity and qualifier.

Unlike the hybrid mode in GoogleSDA which returns
results from both a KB and texts, QAnswer is fully KB-
based, and SPARQL query understanding is challenging. If
we only consider the top-1 SPARQL query we get detailed

Ghosh et al.: Preprint submitted to Elsevier Page 11 of 18

https://spacy.io

Answering Count Questions with Structured Answers from Text

Table 3
Comparing answer inference results (in percentages) by GT source of CoQuAD queries: KG-answerable, snippet-answerable and
no direct answers (NDA). The number of queries in each type in mentioned in brackets in the column header.

System KG (50) Snippet (172) NDA (100)
RP Cov P/C RP Cov P/C RP Cov P/C

QAnswer (Diefenbach et al., 2019) 12.2 98.0 21.7 4.1 97.0 8.0 8.2 94.0 15.1
GoogleSDA 100 100 100 75.0 2.3 4.5 40.0 5.0 8.8
CoQEx 23.1 98.0 37.4 45.3 85.8 59.3 31.9 76.3 45.0

Table 4
MAP@k, AR@k (R@k), Hit10 and MRR of CoQEx and baselines for the answer explanations.

System MAP@1 MAP@5 MAP@10 AR@1 AR@5 AR@10 Hit@10 MRR
CoQuAD (142 queries)
QAnswer (Diefenbach et al., 2019) 8.5 9.3 9.6 2.9 6.5 8.4 19.7 0.118
GoogleSDA 14.8 12.8 10.6 4.8 13.7 14.3 23.2 0.185
CoQEx 12.0 11.7 11.0 2.3 9.3 12.7 37.3 0.200
Natural Questions (84 queries)
QAnswer (Diefenbach et al., 2019) 14.3 15.7 16.3 5.0 11.1 14.3 33.3 0.199
GoogleSDA 25.0 21.7 17.9 8.0 23.2 24.2 39.3 0.313
CoQEx 9.5 8.0 7.2 3.6 8.0 11.2 25.0 0.143

interpretation of the natural language query but the result is
homogeneous. For example in the query how many territo-
ries does canada have, territories is interpreted as located
in the administrative territorial entity and in the query how
many poems did emily dickinson write, write is interpreted
as author.

The relations and answer types used in the top-k SPARQL
queries can provide insights into existing contextualization
in KB-QA as follows. If a subsequent query returns the
same set of answers and has similar interpretation, then we
have Synonyms and when a subsequent query returns an
overlapping set of answers such that one query returns subset
of the other, we have Subgroups.

When we look into the top-2 SPARQL queries we find
that only about 3% of the queries provide equivalent answers.
These however, cannot be considered Synonyms by defini-
tion since they are always query equivalent reformulations.
Typical relations are spouse and sibling such that the refor-
mulations ⟨?𝑥, 𝑠𝑝𝑜𝑢𝑠𝑒, 𝐸𝑛𝑡𝑖𝑡𝑦⟩ and ⟨𝐸𝑛𝑡𝑖𝑡𝑦, 𝑠𝑝𝑜𝑢𝑠𝑒, ?𝑥⟩ are
symmetric and the answer sets are identical but no additional
semantic context is obtained.

In only 5% of the queries, where one SPARQL query
returns the subset of the other, we find distinct relations
indicating subgroups. For example albums in the query, how
many elton john albums are there is interpreted as album
in the first query and studio album in the second and mvps
in how many mvps does kobe bryant have is interpreted as
NBA Most Valuable Player Award in the first query and most
valuable player award in the second.
7.4. Baseline Comparison on Answer Explanation

The results on instance-annotated CoQuAD and natural
Questions dataset are in Table 4. We see that GoogleSDA
is the best across datasets in terms of MAP and AR. CoQEx
comes close in the CoQuAD dataset but performs worse than
both baselines in the Natural Questions dataset. Instance
explanations when readily available in KGs can be extracted

with a single query. Texts prove useful when KG is incom-
plete or the SPARQL translation does not capture the user
intent. We test this hypothesis in the next sub-section.

We identify some challenges which need to be tackled
to improve instance explanations from text. The low preci-
sion scores of CoQEx can be attributed to i) noise due to
non-entity terms recognized as entities ii) alternate human-
readable surface forms like the European Union as the group
with which South Korea has a foreign trade agreement with
instead of the specific group name European Free Trade As-
sociation, iii) entities satisfying a more general criteria, for
instance returning other airports from Vietnam when asked
for airports in Ho Chi Minh City, iv) local or generalized
surface forms, for instance Himalayan rivers referring to
the group of rivers in India originating from the Himalayan
mountain range instead of specifically naming the rivers.
These errors are specific to texts and are difficult to overcome
without human annotation.
7.5. Answer Explanation by Query Type

We analyse the system performances on answer expla-
nation by the query answerability: KG-answerable, snippet-
answerable in Table 5. Our hypothesis is that the baselines
perform very well on answer explanations when the queries
are KG-answerable. The performance values support this
since we observe that GoogleSDA provides the best preci-
sion, recall and MRR sores, followed by QAnswer for the
KG-answerable queries. Given that CoQEx only uses text
information, it still finds relevant instances achieving a 14%
MAP at rank 1.

In the case of snippet-answerable queries, the depen-
dence of the baselines on KGs becomes clear. CoQEx per-
forms the best followed by QAnswer and GoogleSDA. It
should be noted that GoogleSDA might return list pages in
the search result, such that if we were to scrape the contents
of the list page, we would likely find correct instances.
However, we limit ourselves to instances found on the result

Ghosh et al.: Preprint submitted to Elsevier Page 12 of 18

Answering Count Questions with Structured Answers from Text

Table 5
MAP@k, AR@k (R@k), Hit@10 and MRR for the answer explanations of CoQEx and baselines on CoQuAD queries by their GT
source.

System MAP@1 MAP@5 MAP@10 AR@1 AR@5 AR@10 Hit@10 MRR
KG (50 queries)
QAnswer (Diefenbach et al., 2019) 20.0 21.3 22.0 6.1 14.2 18.5 38.0 0.250
GoogleSDA 42.0 36.4 30.0 13.5 38.9 40.7 66.0 0.526
CoQEx 14.0 13.7 12.9 3.8 13.0 18.4 42.0 0.233
Snippet (92 queries)
QAnswer (Diefenbach et al., 2019) 2.2 2.8 2.9 1.2 2.4 3.0 9.8 0.046
GoogleSDA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CoQEx 10.9 10.6 10.0 1.5 7.3 9.7 34.8 0.182

Table 6
User preference for different explanation modes (in percent-
ages).

Explanation Type Bare Count Explanation Both None
CNPs 13.3 50.0 33.3 3.4
Instances 3.3 73.3 23.4 0.0
Snippet 0.0 80.0 20.0 0.0
All 10.0 63.3 23.4 3.3

Table 7
Extrinsic user study on annotator precision (in percentage).

Class Only Count +Instances +CNPs +Snippet All
Correct 73 63 78 75 88
Incorrect 28 45 40 53 45
Both 55 56 63 66 71

page itself, either as an answer from its KG or in the form of
direct answers (featured snippets).
7.6. User Studies

To further verify the user perception of our enhanced
answers, and their extrinsic utility, we performed three user
studies.
User study 1: Intrinsic answer assessment. We asked
120 MTurk users for pairwise preferences between answer
pages that reported bare counts, and counts enhanced by
either of the explanation types. The preference of different
explanation types are shown in Table 6. 50% of participants
preferred interfaces with CNPs, 80% with a snippet, 73%
with instances, 63% preferred an interface with all three
enabled. While snippets are already in use in search engines,
the results indicate that CNPs and instances are considered
valuable, too.
User study 2: Extrinsic utility for assessing system an-
swer correctness. We also validated the merit of expla-
nations extrinsically. We took 5 queries with correct count
results, 5 with incorrect results, and presented the system
output under the 5 explanation settings to 500 users. The
users’ task was to judge the count as correct or not based on
the explanations present. The measured precision scores are
in Table 7. All explanations had a positive effect on overall
annotator precision, especially for incorrect counts.
User study 3: User satisfaction. In this study we asked 100
MTurk users to report their satisfaction with CoQEx’s out-
put, when presented with an answer screenshot containing

the answer inference, along with the different explanations.
We also showed the first few annotated snippets as prove-
nance for the system explanations. Users were then given a
5-point Likert scale to express their satisfaction, along with
a text field in which they should report a justification. The
evaluation was performed on the same 10 queries as before.

On the five-level Likert scale of satisfaction, 37% of
the users were fully satisfied, 55% were satisfied, 2% were
neither satisfied or dissatisfied, 2% were dissatisfied and 4%
of the user were fully dissatisfied. Summing up, 92% of
users were at least satisfied. Concerning qualitative justifi-
cations, satisfied users mostly provided short praise, some
noted specific count contexts which they found useful. For
instance, one user wrote that the eleven studio albums is
good for the query how many albums does eminem have.
Some of the phrases used by fully satisfied users were:
clearly listed, 100% accurate, thorough, detailed, easy to
read, lots of information, makes sense, well understood. Two
of the users who felt fully dissatisfied had technical issues
with the display and one expected more recall. The users
who responded as being dissatisfied commented that the
answer inference seemed incorrect in light of the provided
explanations. This corroborates the results from our second
user study, where we found that explanations helped users
in determining the correctness of the system’s answer. The
users who showed neither satisfaction nor dissatisfaction
explained that, despite onboarding, they did not understand
the task well enough.

8. Component analysis of CoQEx
We evaluate the CoQEx components to determine the

best configurations for answer inference, consolidation and
explanation.
8.1. Span Prediction Model for Answer Inference

We test the candidate generator for count spans on Span-
BERT (Joshi et al., 2020) finetuned on i) CoQuAD and, ii)
the popular general QA dataset SQuAD (Rajpurkar et al.,
2016) on different span selection thresholds in Figure 8.
Span selection works such that counts coming from spans
with a model confidence above the threshold is used for
aggregation. As is expected, the precision goes up while the
coverage decreases as the thresholds are set higher, since
the model becomes more conservative on high confidence

Ghosh et al.: Preprint submitted to Elsevier Page 13 of 18

Answering Count Questions with Structured Answers from Text

Figure 8: Performance of fine-tuned models on answer in-
ference metrics, (from left to right) Relaxed Precision (RP),
Coverage (Cov) and Relaxed Precision-Coverage trade-off
(P/C) across different span selection thresholds.

Table 8
Intrinsic evaluation of the Answer Inference on consolidation
alternatives. The model is SpanBERT+CoQuAD with span
prediction threshold=0.5
Consolidation Relaxed Precision (%) Coverage (%) Proximity
Median 35.4 84.7 0.611
Most Confident 37.0 84.7 0.600
Most Frequent 37.7 84.7 0.611
Weighted Median 37.7 84.7 0.620

predictions. A threshold of 0.5 gives the best precision-
coverage trade-off.

Fine-tuning on SQuAD gives higher precision scores at
thresholds greater than 0.4. However, this difference, which
goes up to 3% max, is a trade-off to the higher coverage of
CoQuAD gives, between 5%-8% higher, resulting in over-
all more correctly answered queries. Here, we average the
metrics over all consolidation strategies (Most Frequent. Me-
dian and Weighted Median) and compare the consolidation
schemes next.
8.2. Best Consolidation for Answer Inference

When selecting a consolidation strategy, we compare the
Relaxed Precision and Proximity metrics, since coverage is
same for all strategies (see Table 8). The confident strategy,
which in essence performs no consolidation has the lowest
Proximity beating only the median consolidation strategy in
Relaxed precision by 1.6%.

The weighted median is the winning strategy indicating
that using model confidence as weights boosts performance.
The naive frequent strategy comes very close to the weighted
median scheme, both in terms of RP, where it is equal, and
Proximity (behind by 0.09). Thus, for queries backed by less
variant data, frequent is good enough, but to have an edge in
more variant data weighted median is the way to go.
8.3. Accuracy of Answer Contextualization

The accuracy of the CNP categories is directly depen-
dent on the quality of the prediction. Since in this experiment
we only want to test the accuracy of the CNP category clas-
sifier, we restrict ourselves to CNPs from correct predictions
(RP=1). We assess the classification accuracy of CNPs for a
manually labelled sample of 601 CNPs for 106 queries.

A strict synonym threshold of 𝛼 = 0% (CNPs equal to
predicted count with cosine similarity > 0) ensures a high
accuracy of 82.1% for Synonyms and only decreases with

Figure 9: MAP and Average recall across threshold values and
ranks. The values are averaged over consolidation alternatives.

increasing 𝛼 down to 69.1% for 𝛼 = 100%. The accuracy of
Subgroups is initially low (34.4%). It increases with higher
levels of 𝛼, peaks at 𝛼 = 60% and then decreases. This
happens because as 𝛼 increases, more incorrect CNPs are
classified as Synonyms.

At lower values of 𝛼 CNPs which are synonyms of
the predicted count but a bit further away get classified as
Subgroups. As 𝛼 increases, these CNPs with counts a bit
further away from the predicted count are correctly classified
as Synonyms and the accuracy of the Subgroups increases.
After 𝛼 crosses 60%, CNPs which are subgroups of the
predicted count are mis-classified as Synonyms, thereby
decreasing the accuracy of the Synonyms and the Subgroups.
The CNPs with very low counts are still mis-classified as
Subgroups if they have a high semantic similarity to the
representative CNP.

The number of Incomparable CNPs decreases with in-
creasing 𝛼, which gives a higher accuracy but at the cost of
incorrect Synonyms and Subgroups. A weighted optimum is
reached at 𝛼 = 30%, where the accuracy of the Synonyms
does not degrade much (79.6%), and the accuracy of Sub-
groups and Incomparables is both above 60% (61.9% and
71.4% respectively).
8.4. Effect of Model Confidence on Answer

Explanation
We see the effect of thresholding the answer spans by

the confidence of the span prediction model on MAP and
average recall in Figure 9. We observe that, while the recall
goes down in general with increasing model confidence,
except for recall at rank 1, which stays more or less constant
for thresholds between 0.1 and 0.8, the precision drops
sharply when model is both less and more confident and has
two peaks at 0.2 and 0.7.

We can argue that the gradual drop in recall is because
the model predicts less number of high confidence spans.
The precision has a sharp increase initially when increasing
the model confidence threshold from 0 to 0.2, because at
threshold=0, we consider all predictions and this introduces
a lot of noise. Whereas, the drop in precision at thresholds
0.8 and higher is probably due to the model being penalized

Ghosh et al.: Preprint submitted to Elsevier Page 14 of 18

Answering Count Questions with Structured Answers from Text

Figure 10: MAP and Average Recall of different consolidation
strategies at ranks 1, 5 and 10 when span selection thresh-
old=0.2.

Table 9
Number of queries with at least 1 contributing snippet under
different settings and number of snippets per query satisfying
the setting.
Setting #Queries #snippets/query
Counts Candidates 279 5.8
Correct Counts 106 6.0
Relevant CNPs 106 6.0
Instance Candidates 307 15.7
Relevant Instances 39 3.9
Counts & Instance Candidates 151 2.8
Correct Counts + Relevant Instances 3 1

for being too conservative and making sparse or no predic-
tions. Choosing a model confidence threshold of 0.2, creates
a balance between precision and recall values.
8.5. Best Consolidation for Answer Explanations

The MAP and AR scores of different consolidation
strategies are shown in Figure 10. Without consolidation,
MAP and average recall are comparable only at rank 1,
after which the gap between strategies with and without
consolidation increases sharply. All consolidation strategies
perform similarly in average recall and the discriminating
factor is in the MAP by rank. QA + Type Compatibility is
the best overall followed by QA + Summed Confidence. The
naive QA + context frequency performs the worst at rank 1
implying that the most frequent named-entities may not be
the correct explanations.

Thus we can say that consolidation is a determining fac-
tor in increasing performance, with different starting points
at rank 1, but converging at higher ranks. QA + Type Com-
patibility is the most stable across ranks, followed by other
consolidation strategies. With no consolidation, MAP de-
creases rapidly across ranks, unlike consolidation methods
where MAP is stable across ranks. The recall without any
consolidation very quickly stagnates at quite low values
(3.3%).

9. Discussion
9.1. Distribution of CNPs and instances in snippets

In Section 5.2 we introduced the different answer modes
in count queries. An open question is how often these are

actually present in text sources. We distinguish four notable
cases CoQEx encounters in the snippets:

1. Instance candidates - 95.3% of the 322 manually anno-
tated CoQuAD queries have at least one snippet with
instance candidates with an average of 15.7 snippets
per query containing instance candidates.

2. Count candidates - 86.6% of the 322 queries have
snippets with count spans with an average of 5.8
snippets per query containing count candidates.

3. Both instance and count candidates - 46.8% of the
queries have snippets containing both count and in-
stance candidates with an average of 2.8 snippets per
query.

4. Count candidates with semantic qualifiers (e.g., 7 of-
ficial languages and 30 regional languagues) - 86.6%
of the queries have snippets with CNPs, with an aver-
age of 5.8 snippets per query containing CNPs.

Now that we have established that snippets are a good
source of candidates, we also report on the number of queries
and number of snippets per query which contain counts that
lead to correct predictions and relevant instances. These are
summarized in Table 9. Using CoQEx we are able to identify
relevant instances for 39 of our queries spread across an
average of 3.9 snippets per query. Relevant CNPs and counts
could be identified in more than 30% of the count queries
with counts spread across an average of 6 snippets per query.
9.2. Coexistence of counts and instances

In CoQEx the tasks concerning counts and instances
are separately tackled and a natural question arises as to
how counts and instances are spread across the snippets and
whether they frequently coexist in the same document, like
(He wrote 73 songs, for example Let it Be, ...). Frequent
coexistence would be very beneficial for the approach, since
it would allow focusing on identifying snippets that solve
both sub-problems at once.

We find that around 46.8% (151) queries contain at
least one snippet with both counts and instance candidates.
However, the number of snippets containing co-occurring
counts and instances is less than 3 per query and, only 3 of
the 151 queries have correct counts and relevant instances
(see table 9). Thus indicating that relevant information is
spread across contexts making our task of inferring answer
and explanatory evidence from multiple sources a significant
contribution.
9.3. Case Study

We pick up some challenging and interesting count
queries which bring out the complexities of the problem and
also showcase the capabilities of our system. The queries are
collected in Table 10.

The first query is our running example how many songs
did john lennon write for the beatles where the information
need is for songs by Lennon with an additional condition that

Ghosh et al.: Preprint submitted to Elsevier Page 15 of 18

Answering Count Questions with Structured Answers from Text

Table 10
Example outputs of CoQEx with confidence scores of CNPs and aggregated scores of instances in subscripts.

No. Query Inference CNPs Top-5 Instances
1. how many songs did john

lennon write for the beatles
73 CNPrep: 73 songs(0.92)

Synonyms: 61 songs(0.77)
Subgroups: 22 songs(0.67)
Incomparables: 189 songs(0.82), 229 original
songs(0.55), 229 songs(0.5)

x John Lennon’s(0.71)
x Beatles(0.55)
✓Maggie Mae(0.54)

2. how many main islands in
hawaii

8 CNPrep: eight principal islands(0.96)
Synonyms: eight main islands(0.91), six major
islands(0.91), 8 main islands(0.9), 8 largest(0.83)

✓the Big Island(0)

3. how many languages are spo-
ken in indonesia

709 CNPrep: 709 living languages(0.97)
Synonyms: 653 languages(0.98), estimated 700
languages(0.91), 700 living languages(0.96), 725
languages(0.78), 800 languages(0.61)
Subgroups: 300 different native languages(0.94)

✓Malay-Indonesian(0.79)
✓Indonesian language(0.77)
✓Bahasa(0.7)
✓Indonesian(0.35)

4. how many osmond brothers are
still alive

9 CNPrep: nine Osmond siblings(0.89)
Synonyms: nine siblings(0.87), nine children(0.59), 7
brothers(0.71), 9 of the Osmond siblings(0.82)

✓Alan Osmond(0.89)
✓Wayne Osmond’s(0.72)
✓Merrill Osmond(0.64)
✓Donny Osmond’s(0.64)

5. how many wives did king
solomon have

700 CNPrep: 700 wives(0.97)
Synonyms: 500 wives(0.54), seven hundred wives(0.9)
Subgroups: three of his wives(0.96), three children(0.86)
Incomparables: 700 hundred wives(0.85), 1,000(0.98)

✓Moti Maris(0.84)
x Memphis(0.62)

6. how many inactive volcanoes
are in hawaii

5 CNPrep: five active volcanoes(0.87)
Synonyms: four active volcanoes(0.85), five separate
volcanoes(0.73)
Incomparables: 169 potentially active volcanoes(0.8)

✓Diamond Head(0.95)
✓Mauna Kea(0.41)
✓Haleakala(0)

these are for the Beatles band. The complexity of this ques-
tion comes through the snippets which indicate that other
band members (George Harrison, and Paul Mc-Cartney) also
wrote songs and that there are songs co-written by the band
members.

CoQEx returns 73 as the answer inference and count con-
textualizations i) 22 songs which belongs to Subgroups cat-
egory, since it comes from a snippet talking about lead gui-
tarist george harrison wrote 22 songs, ii) 61 songs classified
as a synonym comes from a competing source which says
that “Lennon wrote 61 songs credited to Lennon-McCartney
all by himself” iii) 229 songs, classified as Incomparable,
comes from a snippet about all the songs The Beatles as a
band has written.

Finding instances are much harder with composition
credits varying vastly across songs and albums. The top-
5 instances returned are false positives (names of the band
members). CoQEx identifies one joint composition Maggie
Mae and one album A Hard Day’s Night whose title track
and majority of the album songs are written by Lennon, but
is not very confident, scoring it very low (0.01).

The second query, how many main islands in hawaii,
is looking specifically for the main Hawaiian islands. The
CNPs returned by CoQEx, express the different interpreta-
tions of main as being more popular (major) or being ordered
in terms of size (largest). CoQEx is also able to corroborate
this with correct instances.

The third query, how many languages are spoken in
indonesia seems relatively simple with a popular entity
Indonesia, well-defined predicate spoken in and an answer
type language, but is a great example of high variance an-
swers. The presence of the modifier estimated and multiple

close numbers (653, 700, 709) in the CNPs highlight the fact
that it may not be possible to have one true answer.

The fourth query, how many osmund brothers are still
alive is a query from the CoQuAD dataset, where instances
in the snippets are more prevalent than counts. The CNP 9
siblings counts all brothers (8) and a sister, and 7 brothers
CNP belongs to snippet of the form Melvin Wayne Osmund
has 7 brothers, where the eighth brother is instantiated.
CoQEx gets correct instances except for Marie who is the
Osmund sister. Since all of the Osmund siblings were famous
musicians, they pop up across relevant snippets.

The fifth query, how many wives did king solomon have
is interesting since KGs have two instances of Solomon’s
wives, which would lead a user to believe that 2 is the correct
answer. However, multiple snippets confirm that the number
is 700 and also provides a relevant instance Moti Maris
which is not present in the current KGs.

The sixth query, how many inactive volcanoes in hawaii
is another interesting query which highlights the misunder-
standing of document retrievers of inactive volcanoes as
active, since all snippets returned deal with active volcano
counts. Here, the instances are important, since those re-
turned fall in the dormant or extinct categories of volcanoes.

Preliminary access to the system demonstrator is avail-
able at https://nlcounqer.mpi-inf.mpg.de/, where users can
query pre-fetched snippets used in the CoQuAD dataset or
make limited live queries dealing with counts.
9.4. Limitations and Future Work

Here we discuss major limitations of this study, and
outline future research directions.

Ghosh et al.: Preprint submitted to Elsevier Page 16 of 18

https://nlcounqer.mpi-inf.mpg.de/

Answering Count Questions with Structured Answers from Text

Temporal and Logical Query Extensions. CoQEx is cur-
rently limited to returning answers for queries with ex-
plicit evidence in text. Logical operations, such as inter-
section, difference or union, or temporal filters, are not
supported. This refers to queries like how many players
scored more goals score than Messi, how many Champions
League matches did Messi miss, how many goals by Messi
after 2016, which can only be answered if texts explicitly
mention the counts.

Our syntactic analysis of count queries from CoQuAD
(Section 5.2) found that most queries are of simple form,
nonetheless, by construction, CoQuAD represents only the
head of the distribution, and towards the long tail, complex
queries do occur. Future work could look into using CoQEx
in combination with question decomposition (Wolfson et al.,
2020), to tackle more challenging count queries involv-
ing temporal conditions, comparative notions and semantic
qualifiers. Prior work dealing with entity-centric quantities
(Ho et al., 2020), such as mountains higher than 1000m,
could be extended to address challenging comparative count
queries such as, how many peaks higher than Mount Kili-
manjaro or who has scored more goals: Ronaldo or Messi?.

Answer Explanation Performance. The performance of
the instance-retrieving answer explanation module leaves
considerable space for improvement. Although it outper-
forms GoogleSDA and QAanswer on the challenging text
case by a margin, its absolute performance stands still at only
about 10% precision and recall.

Several points appear important here:
1. Going beyond snippets: For pragmatic reasons (avoid-

ing custom scraping of individual websites), CoQEx
currently only extracts information from search engine
snippets. These are very short and thus naturally lim-
ited in recall, and since precision and recall can be
traded to some degree, extraction from full websites
might provide a handle to also improve precision.

2. Employing domain-specific NER: We are currently
employing a generic coarse-grained NER module
from SpaCy, along with post-filtering via text en-
tailment. Employing fine-grained NER upfront might
provide a better handle on identifying relevant entities
(Choi et al., 2018; Onoe and Durrett, 2020).

3. Knowledge-base linking: Entities are currently not
linked to KBs, and filtering is purely based on text
entailment using the snippet context. Disambiguation
to KB entities would provide helpful context that
could be better used to decide on which entities to
discard/retain.

Multilinguality. While research often focuses on few lan-
guages, work on multilingual QA is gaining ground, as more
benchmarks become available (Ruder and Sil, 2021). In
order to adapt CoQEx to a multilingual setting, we need
to identify the language dependent modules. Our candidate

generation models (in Section 4.1 and 4.3) are trained on
reading-comprehension datasets. These models would need
to be re-trained on language-specific datatsets. Recent lit-
erature addresses this by automatically translating existing
datasets to other languages (Carrino et al., 2020; Nguyen
et al., 2020). Similar approach could be applied to the Co-
QuAD dataset to train the count candidate generation model.
The next task would be to adapt the count and instance
extraction models. Here too, we can access existing models
with a multilingual NER capability (Rahimi et al., 2019;
Tedeschi et al., 2021), but, count extraction in a multilingual
setting is not well researched. The entailment model for
checking answer type compatibility of the instances and the
sentence embedding model for computing semantic related-
ness that CoQEx uses are transformer-based models which
can be adopted for the language at hand. One should also
consider whether the use case focuses on employing multi-
lingual sources at once or on a single language and whether
this language is low-resourced when adapting CoQEx to
other languages.
Unified QA system. We observed that count queries are
an underexplored direction for question answering, but in
an organic use case, they would naturally constitute only
a subset of all queries. Thus, full coverage of uses cases
would require a combination of CoQEx with a regular QA
system. For a joint system, a main challenge would be query
classification, to identify when to send queries to which
of the subsystems, or to design a post-hoc aggregation of
answers from subsystems, like in IBM’s Watson (Ferrucci,
2012). This entails also the special case of dealing with
queries beyond the systems capabilities. The current CoQEx
is designed to always attempt to return answers, while a
joint system should be able to refrain from answering, when
queries appear too difficult (Rajpurkar et al., 2018).

10. Conclusion
We address the gap in distribution-aware prediction,

assimilating semantic qualifiers from web contents and pro-
viding explanations through instances for the class of count
queries. We systematically analysed count queries, their
prevalence, structure and how current state-of-the-art an-
swer them. We provide a thorough analysis of our system
components and how CoQEx compares to the baselines in
different query settings. A thorough discussion on tackled
and open challenges are provided in the discussion section
(Section 9) with observations and case studies.

Improving explanation by instances has a major scope
for improvement, by incorporating KB knowledge (for im-
proving precision) or scraping list pages from search results
(for improving recall). In Section 7 we indicate ad-hoc mech-
anism to identify existing contextualizations in present KB-
QA systems. This can be further expanded independently
or CNPs from text could be useful in identifying relevant
semantic qualifiers in the KB.

Ghosh et al.: Preprint submitted to Elsevier Page 17 of 18

Answering Count Questions with Structured Answers from Text

To foster further research, we release all datasets9 and
provide access to the system demonstrator10 to make queries
and see results through an interactive interface.

References
K. Balog, Entity-Oriented Search, The Information Retrieval Series,

Springer, 2018.
D. Diefenbach, V. López, K. D. Singh, P. Maret, Core techniques of question

answering systems over knowledge bases: a survey (2018).
Z. Huang, S. Xu, M. Hu, X. Wang, J. Qiu, Y. Fu, Y. Zhao, Y. Peng,

C. Wang, Recent trends in deep learning based open-domain textual
question answering systems, in: IEEE Access, 2020.

R. Usbeck, M. Röder, M. Hoffmann, F. Conrads, J. Huthmann, A. N.
Ngomo, C. Demmler, C. Unger, Benchmarking question answering
systems, in: SWJ, 2019.

P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD: 100,000+ questions
for machine comprehension of text, in: EMNLP, 2016.

T. Kwiatkowski, et al., Natural questions: A benchmark for question
answering research, in: TACL, 2019.

M. Dubey, D. Banerjee, A. Abdelkawi, J. Lehmann, LC-QuAD 2.0: A large
dataset for complex question answering over Wikidata and DBpedia, in:
ISWC, 2019.

E. M. Voorhees, Overview of the trec 2001 question answering track, in:
TREC, 2001.

D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase
(2014).

S. Ghosh, S. Razniewski, G. Weikum, Uncovering hidden semantics of set
information in knowledge bases, in: JWS, 2020.

S. Ghosh, S. Razniewski, G. Weikum, Answering count queries with
explanatory evidence, SIGIR (2022).

D. Diefenbach, P. H. Migliatti, O. Qawasmeh, V. Lully, K. Singh, P. Maret,
QAnswer: A question answering prototype bridging the gap between a
considerable part of the LOD cloud and end-users, in: WWW, 2019.

X. Lu, S. Pramanik, R. Saha Roy, A. Abujabal, Y. Wang, G. Weikum,
Answering complex questions by joining multi-document evidence with
quasi knowledge graphs, in: SIGIR, 2019.

K. Xu, Y. Feng, S. Huang, D. Zhao, Hybrid question answering over
knowledge base and free text, in: COLING, 2016.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, W.-t.
Yih, Dense passage retrieval for open-domain question answering, in:
EMNLP, 2020.

M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, O. Levy, SpanBERT:
Improving pre-training by representing and predicting spans, in: TACL,
2020.

V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version
of bert: smaller, faster, cheaper and lighter, in: EMC2, 2019.

D. Chen, A. Fisch, J. Weston, A. Bordes, Reading Wikipedia to answer
open-domain questions, in: ACL, 2017.

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, M. Gardner, DROP:
A reading comprehension benchmark requiring discrete reasoning over
paragraphs, in: NAACL-HLT, 2019.

S. Wang, M. Yu, J. Jiang, W. Zhang, X. Guo, S. Chang, Z. Wang, T. Klinger,
G. Tesauro, M. Campbell, Evidence aggregation for answer re-ranking
in open-domain question answering, in: ICLR, 2018.

R. Saha Roy, A. Anand, Question answering over curated and open web
sources, in: SIGIR, 2020.

P. Mirza, S. Razniewski, F. Darari, G. Weikum, Enriching knowledge bases
with counting quantifiers, in: ISWC, 2018.

S. Reddy, D. Chen, C. D. Manning, CoQA: A conversational question
answering challenge, in: TACL, 2019.

M. Joshi, E. Choi, D. Weld, L. Zettlemoyer, TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension, in:
ACL, 2017.

9https://github.com/ghoshs/CoQEx
10https://nlcounqer.mpi-inf.mpg.de/

J. Berant, A. Chou, R. Frostig, P. Liang, Semantic parsing on Freebase from
question-answer pairs, in: EMNLP, 2013.

R. Usbeck, R. Gusmita, M. Saleem, A.-C. Ngonga Ngomo, 9th challenge
on question answering over linked data (QALD-9), in: ISWC, 2018.

E. Kacupaj, H. Zafar, J. Lehmann, M. Maleshkova, VQuAnDa: Verbaliza-
tion question answering dataset, in: ESWC, 2020.

E. Kacupaj, B. Banerjee, K. Singh, J. Lehmann, Paraqa: A question answer-
ing dataset with paraphrase responses for single-turn conversation, in:
ESWC, 2021.

L. Bauer, Y. Wang, M. Bansal, Commonsense for generative multi-hop
question answering tasks, in: EMNLP, 2018.

C. Zeng, S. Li, Q. Li, J. Hu, J. Hu, A survey on machine reading compre-
hension—tasks, evaluation metrics and benchmark datasets, Applied
Sciences 10 (2020) 7640.

E. Kacupaj, S. Premnadh, K. Singh, J. Lehmann, M. Maleshkova, Vogue:
Answer verbalization through multi-task learning, in: ECML/PKDD,
2021.

K. Krishna, A. Roy, M. Iyyer, Hurdles to progress in long-form question
answering, in: NAACL, 2021.

A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, M. Auli, Eli5: Long
form question answering, in: ACL, 2019.

F. Zhu, W. Lei, C. Wang, J. Zheng, S. Poria, T.-S. Chua, Retrieving and
reading: A comprehensive survey on open-domain question answering,
in: arXiv, 2021.

S. Roy, T. Vieira, D. Roth, Reasoning about quantities in natural language,
in: TACL, 2015.

N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using
siamese bert-networks, in: EMNLP, 2019.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, RoBERTa: A robustly optimized bert
pretraining approach, in: arXiv, 2019.

D. Sullivan, How google autocomplete predictions are
generated, 2020. URL: https://blog.google/products/search/

how-google-autocomplete-predictions-work/.
J. Romero, S. Razniewski, K. Pal, J. Z. Pan, A. Sakhadeo, G. Weikum, Com-

monsense properties from query logs and question answering forums, in:
CIKM, 2019.

G. Navarro, A guided tour to approximate string matching (2001).
T. Wolfson, M. Geva, A. Gupta, M. Gardner, Y. Goldberg, D. Deutch, J. Be-

rant, Break it down: A question understanding benchmark, Transactions
of the Association for Computational Linguistics 8 (2020) 183–198.

V. T. Ho, K. Pal, N. Kleer, K. Berberich, G. Weikum, Entities with
quantities: Extraction, search, and ranking, Proceedings of the 13th
International Conference on Web Search and Data Mining (2020).

E. Choi, O. Levy, Y. Choi, L. Zettlemoyer, Ultra-fine entity typing, in:
ACL, 2018.

Y. Onoe, G. Durrett, Fine-grained entity typing for domain independent
entity linking, in: AAAI, 2020.

S. Ruder, A. Sil, Multi-domain multilingual question answering, Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language
Processing: Tutorial Abstracts (2021).

C. P. Carrino, M. R. Costa-jussà, J. A. R. Fonollosa, Automatic spanish
translation of squad dataset for multi-lingual question answering, in:
LREC, 2020.

K. V. Nguyen, D.-V. Nguyen, A. G.-T. Nguyen, N. L.-T. Nguyen, A
vietnamese dataset for evaluating machine reading comprehension, in:
COLING, 2020.

A. Rahimi, Y. Li, T. Cohn, Massively multilingual transfer for ner, in: ACL,
2019.

S. Tedeschi, V. Maiorca, N. Campolungo, F. Cecconi, R. Navigli, Wikineu-
ral: Combined neural and knowledge-based silver data creation for
multilingual ner, in: EMNLP, 2021.

D. A. Ferrucci, This is Watson, IBM Journal of Research and Development
(2012).

P. Rajpurkar, R. Jia, P. Liang, Know what you don’t know: Unanswerable
questions for squad, in: ACL, 2018.

Ghosh et al.: Preprint submitted to Elsevier Page 18 of 18

https://github.com/ghoshs/CoQEx
https://blog.google/products/search/how-google-autocomplete-predictions-work/
https://blog.google/products/search/how-google-autocomplete-predictions-work/

